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Abstract

Nonlinear dynamic analysis and model simulations are used to study the nonlinear dynamic characteristics of vocal folds

with vocal tremor, which can typically be characterized by low-frequency modulation and aperiodicity. Tremor voices

from patients with disorders such as paresis, Parkinson’s disease, hyperfunction, and adductor spasmodic dysphonia show

low-dimensional characteristics, differing from random noise. Correlation dimension analysis statistically distinguishes

tremor voices from normal voices. Furthermore, a nonlinear tremor model is proposed to study the vibrations of the vocal

folds with vocal tremor. Fractal dimensions and positive Lyapunov exponents demonstrate the evidence of chaos in the

tremor model, where amplitude and frequency play important roles in governing vocal fold dynamics. Nonlinear dynamic

voice analysis and vocal fold modeling may provide a useful set of tools for understanding the dynamic mechanism of

vocal tremor in patients with laryngeal diseases.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Complex phenomena such as bifurcation and chaos have been widely observed in mechanical vibratory
systems [1–3]. In recent years, nonlinear mechanisms of abnormal or disordered behaviors have also been
suggested in biomedical systems [4–12]. These investigations examine potential contributions of nonlinear
dynamics to the analysis and modeling of physiologic disorders. Tremor denotes involuntary and
approximately sinusoidal oscillation in biomedical systems and may cause movement and voice disorders.
The oscillatory patterns of tremor in human physical function are caused most directly by the asynchrony of
antagonistic muscle groups [8–10]. Biomedical systems inevitably exhibit some natural physiologic tremor, but
excessive tremor becomes pathologic when it impairs an individual’s ability to perform normal physical
behaviors. Unlike movement disorders from limb tremor [11,12], nonlinear dynamic characteristics of voice
disorders resulting from vocal tremor have not yet been studied.
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.02.026

ing author. Tel.: +1 608 265 9854; fax: +1 608 265 2139.

ess: zhang@surgery.wisc.edu (Y. Zhang).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.02.026
mailto:zhang@surgery.wisc.edu


ARTICLE IN PRESS
Y. Zhang, J.J. Jiang / Journal of Sound and Vibration 316 (2008) 248–262 249
Voice tremor has been pathophysiologically linked to respiratory, laryngeal, and articulatory aspects of
phonation. In terms of the laryngeal aspect, slow rhythmic motor unit firings of laryngeal muscles may result
in vocal tremors. The clinical signals of vocal tremor are low-frequency modulations of voice frequency or
amplitude and intermittent voice instability [13–16]. The typical frequency range for pathological tremor is
between 4 and 7Hz. Recent measures of tremor intensity and frequency have linked vocal tremor to
pathological hoarseness [13,16–19]. Voice perturbation analysis has established that tremor voices may display
moderately elevated frequency and amplitude perturbations [18]. However, traditional voice methods
[15,18,20] cannot be applied to the quantitative analysis of aperiodic or irregular voices observed in vocal
tremor to obtain information about the underlying mechanism. Nonlinear dynamic analysis [21] represents a
valuable method for describing the complexity of systems and has been applied to describe disordered voices
from patients with laryngeal pathologies, including Parkinsonian dysarthria [22], vocal polyps [6,23], and
laryngeal paralysis [24]. On the other hand, nonlinear vocal fold models allow simulation of a wide range of
phonation phenomena [4,5,25], and have been used to predict information about the dynamics of disordered
voices associated with laryngeal pathologies [16,26,27]. Although the importance of nonlinear dynamic
methods in analyzing and modeling tremor voices is clear, few studies have been performed to explore the
dynamic mechanism of vocal tremor from a nonlinear dynamics point of view.

In this paper, we employ nonlinear dynamic voice analysis as well as vocal fold modeling to study the dynamics
of vocal tremor in laryngeal systems with a variety of laryngeal diseases such as paresis, Parkinson’s disease,
hyperfunction, and adductor spasmodic dysphonia. The statistical difference between normal and tremor voices is
examined using nonlinear dynamic analysis. Based on the estimated system variable numbers from correlation
dimension analysis, we propose a nonlinear tremor model coupled with a vocal fold system to study the dynamic
mechanism of vocal tremor. Lyapunov exponents and Kaplan–Yorke dimensions are calculated. Bifurcation
diagrams are used to investigate the effects of tremor amplitude and frequency on vocal fold dynamics. The
results reveal the nonlinear dynamic mechanism of vocal tremor in patients with laryngeal pathology.

2. Nonlinear dynamic analysis of pathological voices from patients with vocal tremor

2.1. Database

The voice samples examined in this study were selected from the disordered voice database, model 4337,
version 1.03 (Kay Elemetrics Corporation, Lincoln Park, NJ, USA), developed by the Massachusetts Eye and
Ear Infirmary Voice and Speech Lab. We included 15 patients with vocal tremor (three males and 12 females,
ages 38–81) and 15 normal subjects (four males and 11 females, ages 39–55) from this database. The laryngeal
pathologies include paresis, bowing, Parkinson’s disease, hyperfunction, vocal fold scarring, vocal fold edema,
dyskinesia, and adductor spasmodic dysphonia. Subject information is shown in Table 1, and more detailed
subject information is available in the Disordered Voice Database.

The voices were recorded with a sampling rate of fs ¼ 44.1 kHz and 16-bit resolution in a soundproof booth
in order to reduce the environment noise. Subjects were asked to sustain the vowel /a/ at a comfortable pitch
and intensity, as steadily and as long as possible in order to reduce variances or tremors in the respiratory and
articulatory aspects of phonation. In order to avoid transient effects occurring during voice onset and offset,
stable segments in the middle of the trial with a length of 1 s were chosen in each sample. These mean that the
voice tremors in this study may mainly come from variances in the biomechanical properties of the laryngeal
system. We describe the voice segment as s(t1), s(t2), s(t3), y, where s(ti)AR, ti ¼ iTs, Ts ¼ 1/fs, i ¼ 1, 2,y, N.
Here, N denotes the voice signal length.

Only the sustained vowel /a/ was included in this Disordered Voice Database. Nonlinear dynamic
characteristics of other sustained vowels of normal and pathological subjects are also important, and further
study might be needed.

2.2. Data analysis

To investigate the nonlinear dynamic characteristics of the tremor voice time series s(ti), phase space
reconstructions and correlation dimensions are employed. Using the time delay technique [28,29], an
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Table 1

Subject information

Subject no. Sex Age Diagnosis Subject no. Sex Age Diagnosis

1 F 52 Normal 16 F 53 Paresis

2 F 43 Normal 17 F 63 Vocal fold bowing

3 M 44 Normal 18 F 54 Adductor spasmodic dysphonia

4 M 44 Normal 19 F 75 Parkinson’s Disease

5 F 43 Normal 20 M 76 Hyperfunction

6 F 43 Normal 21 M 69 Vocal fold scarring

7 M 55 Normal 22 F 38 Adductor spasmodic dysphonia

8 F 40 Normal 23 F 49 Vocal fold edema

9 F 43 Normal 24 F 81 Dyskinesia

10 F 45 Normal 25 F 70 Adductor spasmodic dysphonia

11 F 39 Normal 26 F 64 Adductor spasmodic dysphonia

12 F 40 Normal 27 F 38 Hyperfunction

13 M 46 Normal 28 F 73 Adductor spasmodic dysphonia

14 F 39 Normal 29 F 79 Adductor spasmodic dysphonia

15 F 44 Normal 30 M 56 Adductor spasmodic dysphonia
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m-dimensional delay-coordinate phase space can be reconstructed as

Xi ¼ fsðtiÞ; sðti � tÞ; . . . ; sðti � ðm� 1ÞtÞg, (1)

where m is the embedding dimension and t the time delay estimated by using the mutual information method
[30]. The correlation dimension, D2, quantifying the dimension of a reconstructed phase space, can be
calculated as [31]

D2 ¼ lim
r!0

ln CðrÞ

lnðrÞ
(2)

and the improved algorithm proposed by Theiler [32] is used to calculate the correlation integral by

CðrÞ ¼
2

ðN þ 1�W ÞðN �W Þ

XN�1
n¼W

XN�1�n

i¼0

y r� Xi � Xiþn

�� ��� �
, (3)

where r is the radius around Xi, W is set to be the time delay t, and y(x) satisfies

yðxÞ ¼
1; x40;

0; xp0:

(

In the curve of lnC(r) versus ln(r), if the radius r is too small (at the noise level of the signal), random noise
will be dominant so that the estimate of D2 will approach the embedding dimension m and continue to increase
with m. If r is too large (about the overall size of the attractor), all dot pairs in the reconstructed phase space
will be smaller than r so that the correlation integral will not exhibit scaling behavior and the estimated
dimension will be both m and r dependent. Thus, there is a finite region between these two regions, termed the
scaling region [31], in which the slopes of the lnC(r) versus ln(r) curves increase at first but eventually converge
with increasing m. The dimension estimate and its standard deviation were derived using a linear curve fit
to the curve of lnC(r) versus ln(r) in this scaling region [31–33]. For a sufficiently large embedding dimension
m, the estimated dimension is both m and r independent in the scaling region, and a small standard error
(less than 5%) of the slope leads to a reliable dimension estimation of a chaotic time series.

Normal voices usually show nearly periodic waveforms and discrete frequency spectra [Fig. 1(a) and (b) of
the normal voice from subject 11]. The frequency spectrum of the voice is obtained using the Fourier
transform with the Hamming window. During voice production, the vocal folds act as the sound source and
radiate sound waves which travel along the vocal tract. The vocal tract modulates these sound waves and
outputs a voice signal. Multiple harmonic components can be observed in the amplitude spectrum of the 1 s
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Fig. 1. The nearly periodic waveform (a) and amplitude spectrum (b) of a normal voice from subject 11.
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Fig. 2. The low-frequency modulation waveform (a) and amplitude spectrum (b) of a pathological voice from patient 25 with vocal

tremor.
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Fig. 3. The aperiodic waveform (a) and broadband amplitude spectrum (b) of a pathological voice from patient 20 with vocal tremor.
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voice sample, as shown in Fig. 1(b). In comparison with normal voices, pathological voices from the patients
with vocal tremor may display low-frequency modulation and voice irregularities. Fig. 2(a) shows the low-
frequency modulation in a tremor voice from subject 25. A series of lateral sideband frequency components
around the fundamental frequency can be observed in the amplitude spectrum in Fig. 2(b), where the tremor
frequency is estimated to be about 6.7Hz by calculating the difference between the lateral sideband frequency
components and the fundamental frequency. Vocal tremor may also cause a disordered voice with an
aperiodic time series and a noise-like broadband spectrum, as shown in Fig. 3(a) and (b) from subject 20.
Frequency spectrum analysis qualitatively reveals the different frequency characteristics between the normal
and tremor voices. In voice science studies [34,35], voice signals can be classified as type 1, 2, or 3 signals,
where type 1 signals are nearly periodic, type 2 signals contain strong frequency modulations or subharmonics,
and type 3 signals are irregular and aperiodic. The typical waveforms of these three types of signals are shown
in Figs. 1(a), 2(a), and 3(a). Recent studies have found that jitter and shimmer, two traditional perturbation
measurements, are appropriate for nearly periodic type 1 signals but may not be applied for type 2 and type 3
signals [34]. Nonlinear dynamic methods, however, provide an important application capable of analyzing all
three signal types [35]. Thus, traditional perturbation analysis may be inappropriate for the analysis of the
tremor voices used in this study. In order to quantify the low-frequency modulation and irregular tremor voice
and determine how many degrees of freedom or variable numbers might be needed for modeling vocal fold
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vibrations, nonlinear dynamic analysis, such as correlation dimension analysis, is necessary and will be applied
in this study.

Fig. 4(a) shows the correlation integral lnC(r) versus ln(r) for the tremor voice in Fig. 3, where the voice
sample length is 1 s and the property time delay is t ¼ 16Ts. The curves from bottom to top correspond to
m ¼ 1,2,y,15, respectively. In the scaling region (29.7oro211.8), the slope converges to 5.4170.03 for
sufficiently large m. In comparison, we calculated the correlation integrals for the surrogate data of the tremor
voice, as shown in Fig. 4(b). The surrogate data are obtained by using the procedure proposed by Theiler [32],
i.e., performing a Fourier transform, randomizing the phases of the Fourier components, and then performing
an inverse Fourier transform. The surrogate data differs from the tremor voice in that it does not have a
scaling region and the slope does not converge with increasing m. The estimated dimension of the tremor voice
is significantly less than that of the surrogate data, and thus the results of dimension analysis of the tremor
time series can be distinguished from noise data [36,37]. A significant difference between the estimated
dimensions for the original and surrogate data can also be found in other tremor voices. This evidence from
surrogate analysis further shows that the tremor voices in this study have low-dimensional characteristics.
Fig. 4(c) shows the relationship between the estimated dimension and m, in which the curves correspond to the
normal voice, the low-frequency modulation tremor voice, the irregular tremor voice, the surrogate data of
the irregular tremor voice, and random noise, respectively. As m increases, the estimated dimensions of the
random noise and the surrogate data of the irregular tremor voice do not exhibit a saturation tendency;
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Fig. 4. (a) The correlation integral lnC(r) versus ln(r) for the tremor voice, where the curves from bottom to top correspond to

m ¼ 1,2,y,15 respectively. (b) The correlation integral lnC(r) versus ln(r) for the surrogate data of the tremor voice, where the curves
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however, the estimated dimensions of the low-frequency modulation voice and the irregular voice converge to
2.1470.01 and 5.4170.03, respectively. This suggests that tremor dynamics are dominated by deterministic
nonlinearity.

2.3. Statistical analysis

The correlation dimensions of all the normal and tremor voices are obtained using the above procedure. The
Mann–Whitney rank sum test is employed using correlation dimension as the dependent variable and the
subject group (normal or tremor) as the independent variable. Statistical analysis is needed to differentiate
between normal and tremor groups and a significance level of 0.05 was used. Fig. 5 shows the distributions,
D2, of all normal and tremor voices. The median D2 values of normal and tremor groups are 1.51 and 3.17,
respectively. Statistical analysis using the Mann–Whitney rank sum test reveals that the correlation
dimensions of the normal group are significantly lower than those of the tremor group (po0.001).

In this section, we apply nonlinear dynamic analysis for the voices from patients with vocal tremor. The
estimated correlation dimensions of tremor voices converge as the embedding dimension increases, differing
from nonconvergent values of its surrogate data and random noise, as shown in Fig. 4(c). This result is
significant in that it suggests that tremor voices, like limb tremor [11,12], may have nonlinear dynamic
mechanics. All pathological voices from patients with vocal tremor have low-dimensional characteristics, and
thus finite state variables may be sufficient to describe the dynamics of voices. During voice production, vocal
fold vibrations produce a sound wave traveling in the vocal tract, and then the signal is recorded as voice by
using acoustic recording. Because of the physical relevance between vocal fold vibrations and voice signals, it
is reasonable to consider that the nonlinear properties of tremor voices are related to the nonlinear features of
vocal fold vibrations. A nonlinear model is then necessary to investigate the complex dynamics of vocal
tremor. The correlation dimension values of all tremor voices are greater than 2, and thus at least three state
variables may be necessary to model the vibrations of the vocal folds with vocal tremor. In addition, as shown
in Fig. 5, the correlation dimension values of tremor voices are statistically higher than those of normal voices,
which reveal that vocal tremor may be more complex and may require more state variables to describe their
dynamics. Therefore, nonlinear dynamic analysis of tremor voices provides valuable information for modeling
the vibrations of vocal folds with vocal tremor.

3. Nonlinear model of the vocal folds with vocal tremor

3.1. Vocal tremor model

The tremor voice signals mix vocal fold dynamics with other non-glottal factors, such as vocal tract filtering,
aerodynamic noises, and sound radiation, and thus cannot independently monitor the dynamic changes of
vocal folds due to vocal tremor. However, in vocal fold models, the system parameters such as tremor
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Fig. 5. The distributions, D2, of all normal and tremor voices, where the line inside the box marks the median, whiskers show 10th and

90th percentiles, and the dots represent outliers.
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amplitude, frequency, vocal fold stiffness, and subglottal pressure can be systematically monitored and
independently controlled; thus, a vocal fold model can reveal the essential dynamics of a laryngeal system
without involving non-glottal factors. In this section, instead of a tremor voice model with other non-glottal
factors, we apply a nonlinear vocal fold model to investigate the effect of vocal tremor on vocal fold dynamics.
The dynamics of the vocal tremor model will be quantified using nonlinear dynamic methods.

Continuum models allow researchers to simulate vibrations of complex objects [39]. However, numerically
solving continuum models for the vocal folds is very time-consuming and complex in computation. It is
particularly difficult to study chaotic dynamics of vocal fold vibration coupled with aperiodic glottal airflow
using continuum models. In order to quantify chaotic laryngeal activities, simple lumped mass models are still
very important. A one-mass model [40] may be an oversimplification of the irregular dynamics of the vocal
folds in patients with laryngeal pathologies, since two or more vibratory modes may be needed to capture the
vibrations of these pathological vocal folds. Using the above nonlinear dynamic analyses of tremor voices, we
have found that at least three state variables may be needed to model vibrations of vocal folds with vocal
tremor. The two-mass model [4,25–27] lumps the viscoelastic properties of oscillating vocal fold tissues into
mass, stiffness, and damping parameters. It provides a simple yet effective way to capture the primary vibratory
features of the vocal folds, and has been successfully used to study the nonlinear vocal fold oscillations in
laryngeal pathologies [25–27]. Many interesting phenomena, such as the phase difference between the lower and
upper edge of the vocal fold, bifurcation, and chaotic vibration patterns, can be modeled by this concept.
However, in most traditional two-mass models, stiffness coefficients are constants and thus cannot be applied
to study vocal tremor due to stiffness modulation [4,25–27,41–44]. Previous two-mass models have not
investigated the chaotic mechanism of vocal tremor and the effects of tremor amplitude and frequency on vocal
fold vibrations. Therefore, in this section, we generalize the two-mass model proposed by Steinecke and Herzel
[26] by coupling it with tremor dynamics to investigate the chaotic vibratory characteristics of vocal folds with
vocal tremor. This model serves as a simple system to simulate the nonlinear dynamics of vocal fold vibration.
More elaborate vocal fold models, such as multiple mass models and finite element models are also important
for further study. The systematic diagram of the model of the vocal folds with vocal tremor is shown in Fig. 6.
The deduction of the dynamic equation is based on the following conditions:
(1)
 We focus on investigating the dynamics of vocal fold vibrations, and the interactions [45–47] of the glottal
flow with subglottal and supraglottal resonances are neglected. Subglottal pressure, Ps, remains constant
and the static component of supraglottal pressure, P0, is zero [48]. Viscous losses inside the glottis are
neglected and the steady glottal airflow satisfies the Bernoulli equation [4,6,25–27,40–44].
(2)
 The vocal folds are symmetric. The lower and upper parts of each side of the vocal folds can be modeled by
a pair of coupled nonlinear oscillators having mass (m), spring constant (k), and damping (r).
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Fig. 6. The systematic diagram of the vocal fold model with vocal tremor dynamics.
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(3)
 The vocal tremor in this study is considered to be from the laryngeal system and the biomechanical
stiffness parameters are considered to exhibit rhythmic alterations or low-frequency modulations in
pathological vocal tremor. Specifically, slow rhythmic motor unit firings of the thyroarytenoid and the
cricothyroid muscles in pathological vocal tremors will produce low-frequency modulations in vocal fold
stiffness [14,15,20]. Some non-glottal factors, such as muscle innervation in the diaphragm and vocal tract
articulators, may also induce tremor voices. In the model simulation of this study, we focus on vocal
tremor in the laryngeal system and describe vocal tremor as a product of abnormal laryngeal muscle
innervation. We will not model these non-glottal tremors; however, the principles and methods from
nonlinear dynamics can be generalized to the study of non-glottal factors, such as aerodynamic force [44].
For the symmetric vocal folds, two sides of the vocal folds have symmetric dynamics. Considering the above
assumptions, we now describe the dynamic equations of the symmetric vocal folds as

m1 €x1 þ r1 _x1 þ K1k1x1 þYð�a1ÞK1c1
a1

2l
þ K3k3ðx1 � x2Þ ¼ ld1P1,

m2 €x2 þ r2 _x2 þ K2k2x2 þYð�a2ÞK2c2
a2

2l
þ K3k3ðx2 � x1Þ ¼ 0 (4a)

and the vocal tremor dynamics as

_Ki ¼ F iðKiÞ ði ¼ 1; 2; 3Þ, (4b)

where x1 and x2 are the displacements of the lower (m1) and upper (m2) parts of the vocal folds. ri and ki

denote damping constant and stiffness of the two masses mi, respectively. Two masses m1 and m2 are vertically
coupled by a linear spring with the coupling stiffness k3. During glottal closure, two sides of the vocal folds
will collide with each other and produce the restoring force Yð�aiÞKiciðai=2lÞ [25,26], where ci denotes the
collision stiffness, di is the thickness of mass mi, and l is the glottis length. The collision function of the vocal
folds can be described as [26]

YðxÞ ¼
tanhð50x=x0Þ; x40;

0; xp0:

(
(5)

The pressures and glottal volume velocity U from the subglottal region to the minimum glottal diameter
satisfy the Bernoulli equation [4,6,25–27,40–44]:

Ps ¼ P1 þ
r
2

U

a1

� �2

¼ P0 þ
r
2

U

amin

� �2

and U ¼

ffiffiffiffiffiffiffiffi
2Ps

r

s
aminYðaminÞ (6)

and then the driving pressure P1 can be deduced as

P1 ¼ Ps 1�YðaminÞ
amin

a1

� �2
" #

Yða1Þ, (7)

where

amin ¼
a1; x1ox2;

a2; x2px1;

(

denotes the minimal glottal area, a1 ¼ a0+2lx1 and a2 ¼ a0+2lx2 denote the lower and upper glottal areas,
respectively, and a0 is the glottal rest area.

Ki is defined as the stiffness factor described by the tremor dynamics Eq. 4(b). Vocal tremors resulting from
laryngeal pathologies may produce low-frequency modulations in the biomechanical parameters of the vocal
folds. We thus describe the low-frequency modulation solution of Eq. (4b) as Ki ¼ F(oTt), where oT/2p is the
tremor fundamental frequency, which is much less than the fundamental frequency o0/2p of the vocal fold
vibration. The stiffness parameter has been changed unilaterally in previous vocal fold models to study some
laryngeal pathologies [26,49]. We thus apply a unified stiffness perturbation factor as K ¼ Ki for all i ¼ 1, 2, 3,
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and then expand the solution of Eq. (4b) as the following Fourier series:

K ¼ C0 þ
X1
k¼1

Ck sin ðkoT tþ ykÞ, (8)

where Ck is kth coefficient and yk is kth phase. For K ¼ 1, Eq. (8) can be reduced to the symmetric model of
normal vocal folds proposed by Steinecke and Herzel [26] with the default stiffness values given by Ishizaka
and Flanagan [25]. In addition, the sinusoidal description K ¼ C0+C1 sin(oTt+y1) has been applied in
previous studies [15,16,20,38], which represent a specific case of Eq. (8) under the first-order expansion.
However, this one order expansion is an oversimplification for practical tremor dynamics since tremor voices
such as Fig. 2 do not usually show pure sinusoidal patterns. Thus, by combining Eqs. (4) and (8), our model
gives a more general description of vocal tremor dynamics.

Considering that the tremor frequency, oT/2p, is much smaller than the natural frequency of vocal fold
vibration, the stiffness perturbation can be described as a quasi-steady process. For sufficiently small damping
force, aerodynamic force, and tremor amplitude and frequency, vocal fold collision will not appear, and we
thus can approximately solve the displacement xi by substituting xiðtÞ ¼ xið0Þ expðj

R t

0 odtÞ ði ¼ 1; 2Þ into
Eq. (4a) as

xiðtÞ ¼ xið0Þ exp j

Z t

0

o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0 þ

X1
k¼1

Ck sinðkoT tþ ykÞ

s
dt

" #
with koT5o0, (9)

where

o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k3

2m1
þ

k2 þ k3

2m2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k3

2m1
�

k2 þ k3

2m2

� �2

þ
k2
3

m1m2

svuut
represents the natural frequency of the vocal fold model without vocal tremor. For the band-limited tremor
signal ðCk5C0Þ, we have the following first approximation solution of Eq. (9):

xiðtÞ ¼ xið0Þ exp j

Z t

0

o0

ffiffiffiffiffiffi
C0

p
1þ

1

2

X1
k¼1

Ck

C0
sinðkoT tþ ykÞdt

 !" #
. (10)

Using the Fourier expansion, Eq. (10) can be expressed as

xiðtÞ ¼ xið0Þ e
jo0

ffiffiffiffiffi
C0

p
t
Y1
k¼1

X1
m¼�1

jmJmðMkÞ expðjmðkoT tþ ykÞÞ

" #
; (11)

where Mk ¼ �ðCko0=2k
ffiffiffiffiffiffi
C0

p
oT Þ and Jmð�Þ is the m-order Bessel function [50]. Eq. (11) shows that low-

frequency vocal tremor can produce a series of side frequencies o07moT (m ¼ 1,2,y) around the natural
frequency of the vocal folds. Under the assumption of small amplitude, Eq. (11) represents an analytic
periodic solution of the tremor model Eqs. (4) and (8). However, for aperiodic vocal fold vibrations, the
solution of Eqs. (4) and (8) is difficult to deduce analytically, and numerical calculation is applied. In the
following numerical calculations, considering the significant decrease Ck of tremor voices, we apply the two
order description of Eq. (8) as K ¼ C0 þ C1 sinðoT tÞ þ C2 sinð2oT tÞ. A fourth-order Runge–Kutta method is
applied to numerically integrate Eq. (4) with the time step 0.01. Lyapunov exponents are calculated to
investigate the global stability of the vocal fold system [41,51], and the Kaplan–Yorke dimension can be
obtained using the definition [21]

DL ¼ k þ

Pk
i¼1li

lkþ1

�� �� , (12)

where k satisfies
Pk

i¼1liX0 and
Pkþ1

i¼1 lio0. Based on the measurements of vocal fold tissue properties,
Ishizaka and Flanagan [25] gave default values of the biomechanical parameters of the two-mass vocal fold
model. The parameter values are listed in Table 2. Here, the used subglottal pressure level of 15 cm H2O is
within the pressure range given by Ishizaka and Flanagan [25]. The tremor frequency and amplitude can be
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Table 2

Parameter values for the vocal fold model

Model parameters

m1 0.125

m2 0.025

r1 0.01

r2 0.01

k1 0.08

k2 0.008

c1 3k1
c2 3k2
k3 0.025

d1 0.25

d2 0.05

a0 0.1

Ps 0.015

l 1.4

r 0.00113
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Fig. 7. The periodic time series (a) and amplitude spectrum (b) of the glottal volume velocity U of the model.
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obtained based on previous voice analysis [13–15,20]. Our recent studies in vocal fold modeling and excised
larynx experiments have shown that extremely high subglottal pressure may produce chaotic laryngeal
activities [41,51], while the applied Ps ¼ 0.015 in this study is not high enough to induce chaotic vocal fold
vibrations for the above system parameter set. All parameters are given in units of cm, g, ms and their
corresponding combinations.

3.2. Low-frequency modulation and chaotic vibration of the vocal tremor model

For K ¼ 1 of the normal vocal folds, Fig. 7(a) and (b) show the periodic time series of the glottal area signal
U with length 1 s and discrete frequency spectrum, respectively. The zero glottal volume flow velocity, U, is
associated with vocal fold collision. The Lyapunov exponents are calculated as l1E0, l2E�0.144,
l3E�0.168, and l4E�0.168, and the Kaplan–Yorke dimension DL ¼ 1 can be obtained. By calculating
the Fourier transform of the displacement signal x1, we can use spectrum analysis to extract the side frequency
due to vocal tremor around the fundamental frequency of vocal fold vibrations. For the tremor dynamics
K ¼ C0 þ C1 sinðoT tÞ þ C2 sinð2oT tÞ with C0 ¼ 1, C1 ¼ 0.2, C2 ¼ 0, and oT/2p ¼ 5Hz, Fig. 8(a) shows the
low-frequency modulation of the waveform that can be theoretically described by Eq. (11). The small
amplitude approximation of Eq. (11) is effective in revealing the physical mechanism of vocal tremor. Based
on previous tremor voice analysis [13–15,20], we use the relative tremor amplitude of C1/C0 ¼ 0.2 and the
tremor frequency oT/2p ¼ 5Hz. The corresponding amplitude spectrum in Fig. 8(b) shows a series of side
frequencies around the natural frequency of the vocal folds. Rewriting Eq. (8) into an autonomous form by
adding the variable z ¼ oTt, we can obtain the Lyapunov exponents as l1E0, l2E0, l3E�0.148, l4E�0.166,
and l5E�0.166, and the Kaplan–Yorke dimension as DL ¼ 2. Thus, the low-frequency tremor modulation
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gives a quasi-periodic solution of the vocal fold system. Furthermore, for the vocal tremor dynamics with C0 ¼ 1,
C1 ¼ 0.3, C2 ¼ 0.6, and a0 ¼ 0.025, an aperiodic time series can be observed in Fig. 9(a), and a broadband
amplitude spectrum is shown in Fig. 9(b). The Lyapunov exponents are calculated as l1E0.058, l2E0, l3E0,
l4E�0.096, and l5E�0.442, respectively. The Kaplan–Yorke dimension DLE3.6. The positive Lyapunov
exponent and fractal dimension demonstrate evidence of chaos in vocal fold systems with vocal tremor.

The two-mass model of the vocal folds with vocal tremor can produce periodic, quasi-periodic, and chaotic
behaviors that are also observed in the tremor voice analysis from Figs. 1 to 3. It should be noted that the
vocal fold model of Eq. (4) cannot give completely consistent simulations for the real tremor voices, since
some non-glottal factors, such as the vocal tract, have not been included in this vocal fold model and the
model parameters of the real voice have not been predefined. Modeling tremor voices involves the interaction
among the vocal folds, subglottal tract, and supraglottal tract, which requires further study. However, this
vocal fold model effectively reveals the dynamic mechanism of aperiodic vocal fold vibration due to vocal
tremor and predicts how the vocal tremor parameters of amplitude and frequency affect vocal fold dynamics.

Although chaotic vocal fold vibration has been reported in our previous studies [27,41,44], the dynamics of
vocal folds with vocal tremor has not yet been studied in general laryngeal diseases and a general vocal tremor
model has not been proposed. A specific case of vocal tremor has been reported in Parkinson’s disease [16].
However, nonlinear dynamic analysis was not used in that study, and the nonlinear dynamic mechanism of
tremor voices was not investigated. Furthermore, the study used a high stiffness coefficient, which is not the
case in most laryngeal diseases. Different laryngeal diseases have different pathophysiological mechanisms
causing varying changes of vocal fold stiffness. Thus, the model with high vocal fold stiffness in Ref. [16]
cannot study the tremor dynamics of general laryngeal diseases. Our study further shows that in addition to a
high stiffness coefficient [16], periodic stiffness perturbation may also induce chaotic vibrations in vocal fold
systems. Chaotic vibration has a higher dimension value than periodic vibration, as observed in Fig. 4(c).
Unlike the single sinusoidal modulation of the Parkinsonian vocal model in Ref. [16], this study provides a
more general model described by Eqs. (4b) and (8) to describe vocal tremors in different laryngeal diseases. In
the experimental study, a number of voice samples from laryngeal diseases such as paresis, hyperfunction,
scarring, Parkinson’s disease, and adductor spasmodic dysphonia were applied. By employing nonlinear
dynamic analysis on these tremor voices, the nonlinear dynamic mechanism was revealed. This study shows
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that vocal tremor represents a general phenomenon and can be widely found in laryngeal diseases. This study
of the dynamic mechanism of vocal tremor may have clinical and scientific value for the understanding of
vocal tremor dynamics in general laryngeal pathologies.

3.3. Effects of tremor amplitude and frequency

To show the effect of tremor amplitude, the bifurcation diagrams with and without vocal tremor are given
in Figs. 10(a) and 11(a), respectively, where the velocity v1 ¼ _x1, obtained from the Poincare section at x1 ¼ 0
versus the stiffness coefficient k3, are illustrated. The corresponding Lyapunov exponents are given in
Figs. 10(b) and 11(b). For the vocal folds without vocal tremor, high periodic vibrations and fine period-
doubling bifurcation can be observed in the bifurcation diagrams with increasing k3, where periodic and
chaotic vibrations are represented by the discrete and scattered points, respectively. The bifurcation points are
located at l2E0 in Fig. 10(b), and the regions of chaotic vibration can be found at l140. However, for the
vocal tremor dynamics K ¼ C0 þ C1 sinðoT tÞ þ C2 sinð2oT tÞ with C1 ¼ 0.03 and C2 ¼ 0.5C1, the periodic
stiffness perturbation will drive the trajectories from the basins of periodic attractors to nearby chaotic
attractors, and thus there is no significant difference between their positive Lyapunov exponents. Low-
frequency stiffness perturbation smears out the fine bifurcation structures, inhibits the period-doubling
bifurcation cascade, and broadens the intervals of chaotic vibrations in the bifurcation diagram (Fig. 11).
Thus, the vocal folds with vocal tremor show a broader chaotic region than the vocal folds without vocal
tremor. The fact that only a few period-doubling bifurcations can be found in tremor voice data may be
related to clinical observation. In contrast, infinite period-doubling bifurcation cascades can be found in the
deterministic vocal fold system without vocal tremor.

In Fig. 12, the contour plane shows the grey-coded value of the maximal Lyapunov exponent l1 with respect
to the tremor amplitude C1 and frequency oT/2p, where C2 ¼ 0.5C1, k1 ¼ 0.044, and the black and white
regions correspond to l140 and l1E0, respectively. For sufficiently large tremor amplitude, chaotic
vibrations with positive Lyapunov exponents can be seen. When the system stiffness parameters are perturbed,
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system dynamic behaviors will change correspondingly. With sufficiently large tremor amplitude, the
trajectory will be driven to a nearby chaotic attractor, and chaotic regions in the bifurcation diagram will
broaden. Similar phenomena have been observed in our previous model study [44], where turbulent noise
generated by unsteady glottal airflow was applied as an external aerodynamic perturbation factor. Thus,
biomechanical perturbation factors may increase the vibratory complexity of the vocal folds.

4. Conclusion

In this paper, we have studied nonlinear dynamic characteristics of vocal tremor using voice analysis and
model simulation. Low-frequency modulation and aperiodicity have been found in tremor voices. The tremor
voices from patients with laryngeal diseases, such as paresis, Parkinson’s disease, hyperfunction, and adductor
spasmodic dysphonia showed low-dimensional characteristics, differing from random noise. The correlation
dimensions of tremor voices were statistically higher than normal voices. Furthermore, based on the results
of nonlinear dynamic analysis of tremor voice, a nonlinear vocal tremor model was proposed. Under small
amplitude approximation, the analytic solution of the model was expanded as a series of Bessel functions. For
aperiodic vocal fold vibrations, fractal dimension and positive Lyapunov exponents showed evidence of chaos.
Tremor amplitude and frequency represent important parameters in governing vocal fold dynamics.
Sufficiently large tremor amplitude may cause chaotic vocal fold vibrations. The results from voice analysis
and model simulation revealed the nonlinear dynamic mechanism of vocal tremor. Vocal tremor can be found
in patients with laryngeal disorders, and thus nonlinear dynamic analysis and modeling of vocal tremor may
be helpful for understanding the dynamic mechanisms of laryngeal disorders and may be valuable for
developing new methods for early diagnosis of laryngeal diseases and evaluation of clinical treatment.
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